

Communications & Connectivity

Industrial Internet Innovation Forum

Dr. Rajive Joshi Co-Chair, Connectivity Task Group, Industrial Internet Consortium (IIC) Principal Solution Architect, Real-Time Innovations Inc (RTI) 2017 March 20 Thu, 15:00 EST Reston, VA, USA

www.iiconsortium.org

- 1. How do we go from here to there?
 - Internet of People \rightarrow Things
 - Connectivity vs. Communications vs. Interoperability
- 2. Evolution of the IIoT connectivity stack
 - Connectivity Framework
 - Connectivity Transport
- 3. Defining a long term stable IIoT architecture strategy
 - Embracing the old and the new
 - Connectivity core standards criteria
- 4. Selecting the right connectivity technology
 - Assessment template worksheets
 - Connectivity standards

How do we go from here to there?

Internet of People → Things Connectivity vs. Communications vs. Interoperability

com·mu·ni·cate

/kə myoonə kāt/ 🐠

verb

verb: communicate; 3rd person present: communicates; past tense: communicated; past participle: communicated; gerund or present participle: communicating

1. share or exchange information, news, or ideas.

"the prisoner was forbidden to **communicate with** his family" synonyms: be in touch, be in contact, have dealings, interface, interact, commune, meet, liaise; More

- impart or pass on (information, news, or ideas).
 "he communicated his findings to the inspector" synonyms: convey, tell, impart, relay, transmit, pass on, announce, report, recount, relate, present; More
- convey or transmit (an emotion or feeling) in a nonverbal way.
 "the ability of good teachers to communicate their own enthusiasm"
- succeed in conveying one's ideas or in evoking understanding in others.
 "a politician must have the ability to communicate" synonyms: get one's message across, explain oneself, be understood, "learn how to communicate better"
- · (of two people) be able to share and understand each other's thoughts
- pass on (an infectious disease) to another person or animal. synonyms: transmit, transfer, spread, carry, pass on "the disease is communicated easily"
- transmit (heat or motion).
 "the heat is communicated through a small brass grating"
- (of two rooms) have a common connecting door.
 "he went into the communicating room to pick up the phone" synonyms: connect with, join up with, open on to, lead into "each bedroom communicates with a bathroom"

Share or Exchange Information

verb

Use over time for: communicate

com·mu·ni·ca·tion

/ka myoona kaSH(a)n/

noun

noun: communication

- 1. the imparting or exchanging of information or news. "direct communication between the two countries will produce greater understanding" synonyms: transmission, conveyance, divulgence, disclosure; More
 - · a letter or message containing information or news. plural noun: communications
 - synonyms: message, statement, announcement, report, dispatch, communiqué, letter, bulletin, correspondence
 - "an official communication"
 - the successful conveying or sharing of ideas and feelings. "there was a lack of communication between Pamela and her parents"
 - social contact.

"she gave him some hope of her return, or at least of their future communication" synonyms: contact, dealings, relations, connection, association, socializing, intercourse; More

- 2. means of connection between people or places, in particular.
 - the means of sending or receiving information, such as telephone lines or computers. plural noun: communications "satellite communications"
 - · the means of traveling or of transporting goods, such as roads or railroads. "a city providing excellent road and rail communications"
 - the field of study concerned with the transmission of information by various means.

Origin

communication late Middle English

late Middle English: from Old French comunicacion, from Latin communicatio(n-), from the verb communicare 'to share' (see communicate).

Sharing **Or** Exchanging Information

Use over time for: communication

Information Exchange Infrastructure

con·nec·tiv·i·ty

/kä nek tivədē, kə nek tivədē/

noun: connectivity

the state or extent of being connected or interconnected.

COMPUTING

capacity for the interconnection of platforms, systems, and applications. "connectivity between Sun and Mac platforms"

in·fra·struc·ture /'infra_strak(t)SHar/

noun

noun: infrastructure; plural noun: infrastructures

the basic physical and organizational structures and facilities (e.g., buildings, roads, and power supplies) needed for the operation of a society or enterprise.

in·ter·op·er·a·bil·i·ty

/ in(t)ər äp(ə)rə bilədē/

noun

the ability of computer systems or software to exchange and make use of information. "interoperability between devices made by different manufacturers"

 the ability of military equipment or groups to operate in conjunction with each other. "staff believe interoperability between forces is crucial to effectiveness"

Use over time for: interoperability

US				ſ
Mentio				/
1800	1850	1900	1950	2010

Ability to Exchange and Make Use Information

$\bigoplus Connectivity \rightarrow Communications \rightarrow Interoperability$

Connectivity infrastructure provides support for Interoperability Directly impacts ease of integration, interoperability, and composability

Industrial Internet Connectivity Framework (IICF): Feb 28, 2017

https://www.iiconsortium.org/IICF.htm

Comprehensive treatment of connectivity

As a means of building interoperable IIoT systems

DOWNLOAD PDF

IICF FAQ

Industrial Internet Connectivity Framework (IICF) Goals Accelerating IIoT

Evolution of the IIoT Connectivity Stack

Connectivity Framework Connectivity Transport Core Functions & Typical Considerations

Modeling / Abstraction

perability

Simulation / Implementation

Unite greate bill

Network / Connectivity Level 6 Conceptual Interoperability

Level 5 Dynamic Interoperability

Level 4 Pragmatic Interoperability

Level 3 Semantic Interoperability

Level 2 Syntactic Interoperability

Level 1 Technical Interoperability

Level 0 No Interoperability Increasing Capability for Interoperation

Context of data objects is also shared

Structure of data is also shared

Compatible means of signaling and protocols

http://en.wikipedia.org/wiki/Conceptual_interoperability

http://en.wikipedia.org/wiki/Conceptual_interoperability

http://en.wikipedia.org/wiki/Conceptual_interoperability

Share byte sequences

0000	54	a0	50	cf	b6	80	14	10	91	e2	3a	05	Ø 8	00	45	00	T.P	
0010	00	90	4a	ec	00	00	40	11	07	d4	c0	a8	59	e6	0a	00	J@.	Y
0020	03	0f	f4	22	1c	f3	00	7c	f3	13	52	54	50	53	02	01		RTPS.
0030	01	01	c0	a8	59	e6	00	00	49	03	00	00	00	01	09	01	Y	I
0040	Ø 8	00	1a	b6	c9	58	d6	7f	2b	f1	15	07	50	00	00	00	X	+P
0050	10	00	00	00	00	00	80	00	00	02	00	00	00	00	59	02		
0060	00	00	70	00	10	00	ca	c2	17	c3	18	36	3f	8e	f1	16	p	6?
0070	0e	ee	de	f9	e8	86	01	00	01	00	00	01	00	00	05	00		
0080	00	00	42	4c	55	45	00	00	00	00	55	00	00	00	f1	00	BLUE	
0090	00	00	1e	00	00	00	00	00	00	00	00	00	00	00				

Share byte sequences

0000	54	a0	50	cf	b6	80	14	10	9f	e2	3a	05	08	00	45	00	T.P
0010	00	90	4a	ec	00	00	40	11	07	d4	c0	a8	59	e6	0a	00	J@Y
0020	03	0f	f4	22	1c	f3	00	7c	f3	13	52	54	50	53	02	01	RTPS.
0030	01	01	c0	a8	59	e6	00	00	49	03	00	00	00	01	09	01	Y I
0040	Ø 8	00	1a	b6	c9	58	d6	7f	2b	f1	15	07	50	00	00	00	X +P
0050	10	00	00	00	00	00	80	00	00	02	00	00	00	00	59	02	
0060	00	00	70	00	10	00	ca	c2	17	c3	18	36	3f	8e	f1	16	p6?
0070	0e	ee	de	f9	e8	86	01	00	01	00	00	01	00	00	05	00	
0080	00	00	42	4c	55	45	00	00	00	00	55	00	00	00	f1	00	BLUEU
0090	00	00	1e	00	00	00	00	00	00	00	00	00	00	00			

Semantic Interoperability Example...

Framework Layer : Syntactic Interoperability

Connectivity Framework Layer

- Provides syntactic interoperability between endpoints
 - Share structured datatypes
 - Information is structured in a common and unambiguous data format
 - Meaning (interpretation of datatypes in context) is beyond the scope of this layer
- Connectivity Framework Layer Infrastructure
 - Any programming environment
 - Any computing platform
 - May observe data flows & optimize datatype sharing and delivery

Distributed Data Interoperability & Management

Distributed Data Interoperability & Management

Distributed Data Interoperability & Management

Connectivity Transport Layer

- Provides technical interoperability between endpoints
 - Share byte sequences
 - Structure (interpretation of bytes in context) is beyond the scope of this layer
- Connectivity Transport Layer Infrastructure
 - Any computing platform
 - May observe byte flows & optimize byte sequence sharing and delivery

Defining a long term stable IIoT architecture strategy

Embracing the old and the new Connectivity core standards criteria

Gateways bridge to core connectivity standards:

- Delivers performance with flexibility
- Scales linearly (only have to map each "other" to one "core")
- Supports dataflow security

Choose core standards that matches system needs

Connectivity Core Standards: "lingua franca" for IIoT interoperability

lin∙gua fran∙ca /ˌliNGgwə ˈfraNGkə/

noun: **lingua franca**; plural noun: **lingua francas**

a language that is adopted as a common language between speakers whose native languages are different

Must not compromise:

- Syntactic Interoperability
- Functional Requirements
- Non Functional Requirements
 - Performance
 - Scalability
 - Reliability
 - Resilience
 - Security
 - Safety

Core Gateways enable Horizontal Interoperability Few Core, Many Domain-Specific Standards

- Many Domain-Specific Connectivity Technologies
 - Common or de-facto connectivity technology or standard for a relevant industry or functional domain
 - Gateway will be needed to one of the core connectivity standards
 - Lots of these!
- Few Connectivity Core Standards
 - K Core Connectivity Standards
 - K*(K-1)/2 + (N-K)
 - when $K \ll N$, $O(N^2) \rightarrow O(N)$
 - Must meet the Connectivity Core Standards Criteria

		Core Standard Criterion			
Definition	1	Provide syntactic interoperability			
	2	Open standard with strong independent, international governance			
	3	Horizontal and neutral in its applicability across industries			
	4	Stable and deployed across multiple vertical industries			
	5	Have standards-defined Core Gateways to all other core connectivity standards			
Tec	6	Meet the connectivity framework functional requirements			
hnical	7	Meet non-functional requirements of performance, scalability, reliability, resilience			
	8	Meet security and safety requirements			
Busir	9	Not require any single component from any single vendor			
less	10	Have readily-available SDKs both commercial and open source			

GREEN = Gating Criteria

Selecting the right connectivity technology

Assessment Template Worksheets Connectivity Standards

- Which layers(s) of the **Connectivity Stack** does it provide?
 - May span multiple layers
- What **Core Functions** does it provide?
 - Prioritize the functions for your use case
- How does it rank against the Typical Considerations (of the layers spanned) ?
 - Prioritize the considerations for your use case
- How does it impact system **Architectural Qualities**?
 - Prioritize the qualities for your use case
- How does it fit **Core Connectivity Criteria**?
 - Is a gateway to a Core Connectivity Standard available?
 - Is the gateway standardized?

	Core Standard Criterion	DDS	Web Services	OPC-UA	oneM2M
1	Provide syntactic interoperability	~	Need XML or JSON	V	v
2	Open standard with strong independent, international governance	~	~	~	~
3	Horizontal and neutral in its applicability across industries	V	~	V	v
4	Stable and deployed across multiple vertical industries	Software Integration & Autonomy	V	Manufacturing	Home Automation
5	Have standards-defined Core Gateways to all other core connectivity standards	Web Services, OPC-UA*, oneM2M*	DDS, OPC-UA, oneM2M	Web Services, DDS*, oneM2M*	Web Services, OPC-UA*, DDS*
6	Meet the connectivity framework functional requirements	V	×	Pub-Sub in development	4
7	Meet non-functional requirements of performance, scalability, reliability, resilience	V	×	Real-time in development	Reports not yet documented or public
8	Meet security and safety requirements	~	~	V	v
9	Not require any single component from any single vendor	~	~	~	4
10	Have readily-available SDKs both commercial and open source	~	~	~	~
GREEN = Gating Criteria		* = work in progress		\checkmark = supported, \checkmark = not supported	

Non-overlapping system aspect examples targeted by potential IIoT connectivity core standards

System Aspect	Example User	Approach	Targeting Standard
Software Integration and Autonomy	You are a software architect. You are building a system or product line, and you control the architecture. You critically need to integrate components written by different programmers or even entire teams.	A data centric approach will define the interfaces, capture the dataflow, enable module evolution, and enforce interoperation between teams. This approach also eases redundancy, fast complex data flow, and selective data filtering.	DDS
Device Interchangeability	You are a device manufacturer, with the goal of making devices that will sell into many applications. The device offers services, such as configure, start, stop, etc. You have no idea how the device will eventually be used. Your users are likely not software experts; they just want to add or integrate the device into a workcell.	A device-centric approach will allow the device users to write generic software that will interoperate with competitor's devices.	OPC-UA
Web and Mobile User Interfaces	You are building mobile apps or web browser based applications to provide the human machine interface. You need an easy way to support clean human interaction and access to backend services.	A RESTful approach will make it easy to connect to many types of enterprise systems and UI devices.	Web Services
Information & Communications Technology (ICT) Integration	You are building a wide-area wireless system that needs to allow applications and devices to share data and information. The devices use various technology and domain-specific protocols. The applications and devices you integrate rely on leveraging the services provided by the communications provider network.	A common, standard services-layer approach enables applications and device to share data and information without forcing the application to understand multiple protocols implemented on the devices. The applications can thus run in the Platform Tier and seamlessly connect to diverse IoT devices in the field.	oneM2M

Summary

Accelerating IIoT

Industrial Internet Connectivity Framework (IICF)

IIoT Connectivity Stack

Syntactic Interoperability

- 1. Introduction
- 2. Connectivity Framework
- 3. Connectivity Reference Architecture
- 4. Connectivity Framework Layer
- 5. Connectivity Transport Layer
- 6. How to Assess a Connectivity Technology?
- 7. Connectivity Standards
- 8. Core Connectivity Standards
- 9. Other Connectivity Standards
- 10. Assessment Templates

Thank You!

Rajive Joshi, Ph. D. Real-Time Innovations, Inc. (RTI) rajive@rti.com